BAB II. LANDASAN TEORI

2.1 Studi Literatur

Pada studi literatur disini merupakan bagian yang akan membahas tentang penyelesaian masalah yang akan memberikan jalan keluarnya. Dalam hal ini, akan dikemukakan beberapa teori-teori yang berkaitan dengan masalah yang diangkat.

2.1.1 Penelitian Terdahulu

2.1.1.1 State-of-the-Art Penelitian Terdahulu

Penelitian (Sumari, Sereati, Adiono, & Ahmad, 2020) yang berjudul Toward Cognitive Artificial Intelligence Device: an Intelligent Processor Based on Human Thinking Emulation merupakan penelitian tentang arsitektur prosesor yang dirancang berdasarkan algoritma knowledge grow system (KGS), sebuah konsep baru dalam Artificial Intelligence (AI) yang di fokuskan pada emulasi proses pertumbuhan pengetahuan di otak manusia setelah mendapatkan informasi baru dari organ sensorik manusia. KGS dianggap sebagai metode utama dalam perspektif baru dalam AI yang disebut sebagai Cognitive Artificial Intelligent (CAI). Perancangan tersebut untuk mendapatkan arsitektur jalur data prosesor. Kompleksitas rangkaian prosessor ditentukan oleh banyaknya kombinasi sensor dan hipotesis sebagai masukan utama prosesor. Penelitian ini membahas tentang pengembangan prosesor kecerdasan berdasarkan AI kognitif untuk mewujudkan Sistem Instrumentasi Intelijen dengan menerapkan KGS yang mana proses KGSnya akan dijelaskan dengan menggunakan metode ASSA2010 (Arwin Sumari-Suwandi Ahmad 2010).

Penelitian yang dilakukan oleh (Nourmantana, Witanti, & Hadiana, 2020) yang berjudul sistem penentuan kenaikan pangkat prajurit menggunakan metode CPI pada Kodim 0619 Purwakarta ini melakukan perancangan sebuah aplikasi untuk menentukan lulus atau tidaknya prajurit dalam melakukan berbagai tahapan test, yang mana nilai dari setiap tahapan memiliki syarat lulus nilai tersendiri dari setiap tahapan testnya, test tersebut disebut dengan samapta. Penelitian ini mendapatkan hasil penelitian bahwa sistem tersebut dapat menghitung dan menentukan perangkingan prajurit berdasarkan nilai yang diperoleh selama

melakukan test kenaikan pangkat sesuai dengan bobot dan kriteria yang sudah tersimpan dalam database.

Penelitian milik (Herdiawan, Ahmadi, & Wibowo, 2020) yang berjudul Penentuan Kriteria dan Strategi dalam Menghadapi Peperangan Kepulauan dengan Pendekatan Dematel – Analytic Network Process (ANP) ini melakukan pengamatan penelitian untuk mendapatkan pilihan strategi yang tepat oleh TNI AL dalam rangka peperangan kepulauan yang memerlukan kajian ilmiah terkait kompleksitas faktor yang mempengaruhi kemenangan di dalam peperangan. Terlebih lagi melihat kondisi geografi Indonesia sebagai Negara Kepulauan yang dapat dijadikan sebagai peluang untuk mememanangkan sebuah pertempuran. Oleh karena itu, peneliti memberikan solusi untuk menganalisis kompleksitas didalam pengambilan keputusan strategi menggunakan pengintegrasian pendekatan DEMATEL dan ANP. Berdasarkan penelitian yang dilakukan, peneliti mendapatkan kesimpulan hasil yaitu sistem ini dapat membantu dalam permasalahan tersebut dengan hasil pengolahan data yang dilakukan diperoleh bobot prioritas alternatif yang terpilih yaitu Decisive Battle (0,06369), Blockade (0,06120) dan Fleet in Being (0,04800). Selain itu dilaksanakan analisis BOCR (Benefit, Opportunity, Cost and Risk) diperoleh hasil berdasarkan skenario standar Fleet in Being dengan bobot 0,56233, skenario pesimis terpilih alternatif Decisive Battle dengan bobot 0,09169 dan skenario realistis terpilih alternatif Decisive Battle dengan bobot 0,02237.

Penelitian yang dilakukan (Fadhil, Maarif, & Nivada, 2020) yang berjudul strategi pengambilan keputusan untuk pengembangan pertahanan nasional menggunakan *multi criteria decision making*: pembelajaran dari departemen pertahanan Amerika Serikat. Penelitian ini memiliki tujuan untuk mempelajari strategi pengambilan keputusannya. Hasil yang di dapatkan dalam dilakukannya analisis menunjukkan bahwa Kementrian Pertahanan Republik Indonesia sebagai kementrian yang secara spesifik mengelola sejumlah agenda kebijakan pertahanan dan memerlukan penerapan metode MCDM untuk pengambilan keputusan strategis. Berdasarkan penelitian yang sudah dilakukan, pendekatan MCDM dengan berbagai metode yang telah dikembangkan saat ini dapat digunakan dalam

membanu memudahkan, mempercepat, memperjelas dan juga mempersingkat pengambilan keputusan startegi yang diambil.

Penelitian yang dilakukan (Fadhil, Maarif, & Nivada, 2020) yang berjudul strategi pengambilan keputusan untuk pengembangan pertahanan nasional menggunakan *multi criteria decision making*: pembelajaran dari departemen pertahanan Amerika Serikat. Penelitian ini memiliki tujuan untuk mempelajari strategi pengambilan keputusannya. Hasil yang di dapatkan dalam dilakukannya analisis menunjukkan bahwa Kementrian Pertahanan Republik Indonesia sebagai kementrian yang secara spesifik mengelola sejumlah agenda kebijakan pertahanan dan memerlukan penerapan metode MCDM untuk pengambilan keputusan strategis. Berdasarkan penelitian yang sudah dilakukan, pendekatan MCDM dengan berbagai metode yang telah dikembangkan saat ini dapat digunakan dalam membanu memudahkan, mempercepat, memperjelas dan juga mempersingkat pengambilan keputusan startegi yang diambil.

Penelitian yang dilakukan oleh (Sumaryanti & Nurcholis, 2020) yang berjudul *analysis of multiple criteria decision making method for selection the superior cattle* ini melakukan pengujian tiga metode yaitu AHP, TOPSIS dan SMART. Peneliti melakukan pengujian tiga metode ini untuk mengetahui akurasi hasil perbandingan hasil atau keluaran sistem dengan solusi rekomendasi pakar menggunakan 15 sample sapi betina yang mana akan menghasilkan prioritas atau rangking untuk mendapatkan sapi bibit unggul. Menurut peneliti, hasil dari penggabungan tiga metode ini, menghasilkan prioritas hasil pemilihan yang sama dengan akurasi penentuan prioritasnya sebesar 80%.

Penelitian yang berjudul *a comprehensif evaluation model of military* equipment contractor capacity based on grey target decision theory yang dilakukan oleh (Miao & Jiang, 2020) membahas tentang analisa 8 faktor utama yang mempengaruhi kapasitas kontaktor dan menentapkan model evaluasi komprehensif kapasitas kontraktor peralatan militer berdasarkan teori keputusan target abu-abu. Penelitian ini mengambil contoh dari sebuah proyek produksi dan pengembangan perangkat lunak militer, model evaluasi yang digunakan untuk dilakukan evaluasi kapasitas lima kontraktor dan juga keefektifan model diverifikasi. Dalam metode yang diusulkan oleh peneliti, diharapkan mendapat nilai optimal dari semua indeks

yang dipilih sebagai urutan sasaran dan nilai yang terukur diurutkan sesuai dengan derjat deviasi antara nilai yang diukur dan sasarannya.

Penelitian milik (Yilmaz, Tozan, & Karadayi, 2020) yang berjudul *multi-criteria decision making* (MCDM) *application in military healthcare field* melakukan penelitian tentang aplikasi yang digunakan untuk mengambil sebuah keputusan di bidang kesehatan militer. Misal dalam proses pengobatan suatu penyakit, penentuan metode dalam pengobatan yang tepat dapat mengendalikan keadaan penyakit secara sementara. Pada penelitian ini, peneliti menerapkan metode MCDM untuk kasus ini. Selain di bidang kesehatan militer, ternyata metode ini juga diterapkan di kasus lain sebagai contoh dalam melakukan perancangan organisasi dan operasi strategis, pemilihan peralatan yang menjadikan masalah krusial di bidang militer. Dengan diterapkannnya metode MCDM ini pada bidang militer ternyata dapat membantu secara efektif dalam proses pengambilan keputusan apapun itu dibidang milter dan itu telah menjadi metode yang sering kali digunakan di berbagai bidang karena penerapannya yang mudah.

Penelitian berjudul implementasi metode Analytical Hierarcy Process (AHP) untuk Analisis Faktor Kemanan Laut Indonesia yang dimiliki oleh (Tamam, 2020) meneliti tentang pentingnya model pengamanan laut untuk menentukan faktor yang paling berpengaruh terhadap keamanan laut Indonesia dengan permasalahan yang ada antara lain Indonesia yang memiliki negara kepulauan yang terdiri dari 17.504 pulau dan memiliki pantai sepanjang 81.290 kilometer. Indonesia juga memiliki dua belas lembaga penegak hukum yang berada di laut yang mana lembaga tersebut telah menjalankan tugas dan fungsinya. Akan tetapi, itu semua belum bersinergy yang dapat megakibatkan rentan terhadap keamanan laut. Selain itu, masih banyak faktor yang mempengaruhi keamanan laut, antara lain seperti : faktor politik, hukum, ekonomi, sosail dan budaya, pertahanan dan keamaan, lingkungan dan teknologi. Maka dari itu, peneliti disini memberikan solusi untu dibuatkannya sistem model pengamanan laut yang menggunakan metode AHP sebagai perhitungannya. Hasil yang didapatkan berdasarkan penelitian yaitu faktor dan sub faktor yang paling mempengaruhi terhadap keamanan laut Indonesia yaitu faktor pertahanan dan kemaanan dengan sub faktor pengeluaran anggaran belanja pertahanan nasional.

Penelitian yang dilakukan (Azmi, 2020) yang berjudul sistem pendukung keputusan pemilihan polisi militer terbaik menggunakan metode *additive ratio assessment* (ARAS) ini melakukan pengamatan permasalahan dalam melakukan pemilihan polisi militer terbaik. Karena jumlah polisi militer yang banyak sekali memiliki anggota terbaik dikarenakan tuntuan untuk meningkatkan kinerja anggota untuk melaksanakan tugasnya. Dalam melakukan penyeleksian yang masih dibilang sangat manual, maka dari itu peneliti memberikan solusi untuk dibuatkanlah sebuah sistem yang mana sistem ini dapat melakukan penyeleksian polisi militer terbaik. Hasil dari perhitungan menggunakan metode tersebut mendapatkan hasil keputusan yang tertinggi 0,46 dan peneliti berharap dengan adanya sistem ini dapat mempermudah komandan dalam melakukan pemilihan dan dapat menghemat waktu dalam melakukan pemilihan tersebut.

Penelitian yang dilakukan (Gultom & Waruwu, 2019) yang berjudul sistem pendukung keputusan penempatan prajurit TNI AD di daerah perbatasan menggunakan metode *multi attribute utility theory* ini melakukan pengamatan tentang permasalahan di daerah perbatasan nasional yang merupakan bagian wilayah yang terpencil dan rendah aksesibilitasnya oleh modal transportasi umum,terbelakang dan masih belum berkembang secara mantap, kritis dan rawan dalam ketertiban dan keamanan. Namun, kawasan perbatasan sering dilihat sebagai periphery suatu negara karena letaknya yang jauh dari ibu kota provinsi apalagi ibu kota negara, maka dari itu diperlukan sebuah sistem untuk bisa mengatur prajurit yang mana yang sesuai dengan kriteria yang dapat ditempatkan di daerah perbatasan. Peneliti memberikan solusi dalam permasalahan tersebut dengan membuatkan sebuah sistem dengan metode MAUT yang mana hasil yang di dapatkan yaitu dalam pengambilan keputusan untuk penempatan prajurit TNI AD di daerah perbatasan menjadi lebih terpercinci dan cepat untuk melakukan proses pemilihan prajurit.

Penelitian yang dilakukan (Siregar, 2019) yang berjudul sistem pendukung keputusan pemilihan personel Yon Zipur I Dhira Dharma ke Daerah Rawan Konflik menerapkan metode MOORA ini melakukan pengamatan permasalahan dalam melakukan seleksi dalam pemilihan personel membutuhkan waktu yang sangat lama karena harus sesuai dengan kriteria yang sudah ditetapkan berdasarkan

alternatif yang ada. Sebelumnya, sudah terdapat sistem yang dapat mengatasi permasalahan ini, akan tetapi sistem yang digunakan belum seutuhnya dapat berjalan dengan baik, sehingga mendapatkan hasil yang kurang akurat. Maka dari itu, peneliti memberikan solusi untuk membuat sebuah sistem pendukung keputusan menggunakan metode MOORA yang mana dalam penelelitian ini telah mendapatkan hasil dalam penerapan untuk menentuka pemilihan personel dapat diterapkan dengan baik. Metode ini mampu menunjukkan bahwa salah satu alternatif merupakan prioritas dari sebuah keputusan.

Penelitian yang dilakukan oleh (Parlindungan, Sumantri, & Trismadi, 2019) yang berjudul pemilihan pulau-pulau kecil terluar (PPKT) untuk pembangunan wilayah pertahanan menggunakan spatial decision support system (SDSS) ini melakukan penelitian di daerah Provinsi Maluku tepatnya di PPKT Kepulauan Tanimbar. Permasalahan yang terjadi pada kasus yang diteliti yaitu banyaknya PPKT di wilayah Indonesia serta pemanfaatan yang sangat beragam dan hanya PPKT tertentu saja yang dapat dijadikan wilayah pertahanan. Maka dari itu, peneliti memberikan solusi untuk menyelesaikan masalah tersebut. Pada penelitian ini, peneliti menggunakan Kepulauan Tanimbar, Kabupaten Maluku Tenggara Barat sebagai studi kasus typical case sampling yang mana wilayah tersebut terdapat empat PPKT. Analisa yang digunakan pada penelitian ini yaitu menggunakan SDSS, mengkombinasi SIG dan AHP. Berdasarkan hasil dari penelitian tersebut diketahui bahwa dalam pemilihan PPKT sebagai wilayah pertahanan perlu mempertimbangkan dua faktor, yaitu faktor potensi ancaman dan faktor geografis. Dengan adanya sistem ini juga diketahui wilayah mana yang cocok sebagai wilayah pertahanan.

Penelitian yang dilakukan oleh (Nofitri, 2018) yang memiliki judul penelitian pemilihan prajurit terbaik menggunakan metode AHP ini menemukan hasil pengamatan bahwa dalam upaya menaikkan pangkat seorang prajurit mengalami banyak sekali kendala-kendala mengenai penentuan nilai pembobotan pada sistem di Kantor Pa Sipers. Dengan adanya sistem ini, peneliti mendapatkan hasil bahwa dengan adanya aplikasi ini dapat mempermudah bagi staff untuk membuat laporan penilaian pangkat dan memasukkan data prajurit menggunakan

pemrograman *Visual Basic.Net* dengan database *MySQL* sehingga data yang terdapat dalam sistem lebih optimal dan terorganisir.

Penelitian yang dilakukan oleh (Prabowo, Hasibuan, & Ramdhani, 2018) yang berjudul aplikasi pembelajaran *epidemiologi* gizi menggunakan metode *computer assisted instruction* (CAI) ini melakukan pengamatan bahwa dalam penyampaian materi pembelajaran dengan sistem catat materi, menjelaskan, kemudian dalam pemberian tugas masih dengan cara yang tradisoional. Hal itulah yang menyebabkan terhambatnya pencapaian indicator tujuan dalam melakukan pembelajaran yang telah ditetapkan sebelumnya. Banyak yang merasakan bosan, malas dan juga susah untuk memahami materi yang sedang disampaikan oleh guru pengajar. Dari permasalahan tersebut, peneliti memberikan solusi yaitu pemanfaatan media komputer dalam menyampaikan materi pembelajaran, karena dirasa dengan adanya aplikasi ini pembelajaran dapat sangat optimal dan juga meningkatkan minat para peserta didik untuk mempelajari materi ajar. Benar saja, dengan adanya solusi tersebut, penelitian ini mendapatkan hasil bahwa aplikasi ini dapat digunakan untuk penyusunan materi pembelajaran dengan optimal baik dari sisi pengajar maupun peserta ajar.

Penelitian milik (Munadi, Mukhroji, & et.al, 2018) yang berjudul penerapan multiple attribute decision making dengan *metode simple additive weighting* untuk pemeringkatan kerentanan keamanan website ini penelitian permasalahan yaitu adanya celah keamanan pada lima website universitas negeri di Provinsi Aceh yang berpotensi untuk dieksploitasi bagi criminal teknologi informasi. Maka dari itu, peneliti memberikan solusi untuk melakukan penerapan *Multiple Attribute Decision Making* dengan menggunakan metoe *Simple Additive Weighting* yang mana perangkat lunak OWASP dipergunakan sebagai alat uji yang kemudian di evaluasi dan di analisis dilakukan terhadap kerentanan website terhadap serangan. Hasil pada pengujian ini mendapatkan hasil bahwa potensi kerentanan yang paling tertinggi terjadi menurut peneliti yaitu di Universitas-2 dengan nilai rata-rata kerentanan, 1,72. Kerentanan ini menunjukkan adanya celah keamanan ini yang harus segera diperbaiki segera agar informasi yang tersedia menjadi akurat.

Otak manusia mengalami proses yang luar biasa. Pada penelitian yang dilakukan oleh (Sumari & Ahmad, 2018) menunjukkan tentang pendekatan untuk

meniru komputasi yang terjadi di dalam otak manusia untuk mendapatkan sebuah pengetahuan baru dan menjadikan ilmu tersebut semakin baru. Berdasarkan hal tersebut di bangunlah sistem cerdas yang disebut Knowledge Growing System (KGS). Pendekatan pemodelan kognitif telah menghasilkan model pemrosesan dan teknik informasi manusia yang disebut Arwin-Adang-Aciek-Sembiring (A3S). Metode yang diilhami oleh otak ini membuka yang baru perspektif dalam AI yang dikenal sebagai Cognitive Artificial Intelligence (CAI). CAI memberikan kesempatan luas untuk menghasilkan berbagai teknologi dan kecerdasan intrumentasi serta untuk mendorong perkembangan ilmu kognitif yang kemudian mendorong pendekatan sistem cerdas untuk kecerdasan manusia. Hasil yang didapat berdasarkan penelitian yang dilakukan oleh peneliti menunjukkan bahwa KGS mampu mengembangkan ilmunya dari nol sampai batas tertentu tergantung pada jumlah waktu observasi. Semakin banyak informasi yang diolah, maka semakin banyak pengetahuan yang bisa didapat, diperoleh dan semakin cerdas jadinya. Pengetahuan ini juga lebih tepat dalam mengambil sebuah keputusan dan tindakan yang dapar diambil oleh keputusan tersebut.

Penelitian yang dilakukan oleh (Hozairi, Lumaksono, & et.al, 2018) yang berjudul pemilihan model keamanan laut Indonesia dengan *fuzzy ahp* dan *fuzzy topsis* ini melakukan pengalamatan permasalahan yaitu Indonesia memiliki tingkat kerawanan yang tinggi, diantaranya kasus-kasus illegal. Misalnya, *illegal fishing, illegal logging, illegal mining* dan sebagainya yang membuat Indonesia memerlukan model pengamanan laut yang mampu mengoptimalkan *resource* yang ada. Dalam proses pemilihan model itu tidaklah mudah, maka dari itu peneliti memberikan solusi untuk permasalahan tersebut dengan dibuatkan sebuah sistem pendukung keputusan berdasarkan segala kriteria yang mendukung pengambilan keputusan dalam menentukan model pengamanan laut yang cocok untuk Indonesia. Hasil penelitian yang dilakukan oleh peneliti menghasilkan implementasi MCDM dengan metode *fuzzy AHP* dan juga *fuzzy topsis* yang mana telah merekomendasikan konsep pengamanan laut yang terbaik di Indonesia.

Pada penelitian yang dilakukan oleh (Prasetiya, Witanti, & Ilyas, 2017) yang berjudul sistem pendukung keputusan penempatan kecabangan TNI AD menggunakan metode *Analytic Hierarchy Process* dan *Simple Additive Weighting*

membahas tentang permasalahan untuk menentukan penempatan kecabangan calon siswa yang memakan waktu yang cukup lama, selain itu kriteria penempatan kecabangan siswa, perbedaan kriteria bobot pada setiap kecabangannya, *human error*, dan kekeliruan dalam skoring, dengan adanya sebuah sistem pendukung keputusan sebagai alat bantu, dapat menyelesaikan masalah tersebut. Maka dari itu peneliti membuatkan sebuah sistem pendukung keputusan untuk mengatasi permasalahan tersebut dengan metode *Analytic Hierarchy Process* dan *Simple Additive Weighting* yang hasilnya pada penelitian ini yaitu berupa rekomendasi penempatan kecabangan untuk calon siswa. Untuk pengujian kualitas dari sistem yang dibuat oleh peneliti mendapatkan hasil nilai mencapai 85,65% yang artinya telah memenuhi fungsionalitas dan sesuai dengan kebutuhan.

Penelitian yang berjudul *Multiagent Collaborative Computation For Aircraft Maintenance System* (Sumari & Ahmad, 2017) ini membahas konsep pemanfaatan paradigma *Multiagent Collaborative Computation* (MCC) dalam mendukung proses pengambilan keputusan dalam perawatan pesawat selama misi berkelanjutan di pangkalan terpencil. Sasaran akhir dari sistem perawatan pesawat berbasis MCC adalah informasi yang komprehensif mengenai prosedur perawatan agar pesawat tetap dapat diservis selama implementasi misi. Penelitian ini juga menyajikan teknik untuk mendapatkan informasi yang komprehensif sebagai dasar untuk pengambilan keputusan yang disebut dengan metode fusi informasi-inferencing A3S (Arwin-Adang-Aciek Sembiring).

Penelitian yang berjudul Aplikasi *Cognitive Artificial Intelligence* (Sumari, 2017) Pada Pengambilan Keputusan Strategis Menggunakan *Knowledge-Growing System* Berbasis Metoda A3S (Arwin-Adang-Aciek-Sembiring) membahas tentang penelitian Pemilihan Helikopter Serang Menggunakan KGS dengan Metoda A3S. Pada penelitian tersebut membuktikan secara jelas dan tegas dengan menunjukkan bahwa hasil komputasi KGS dengan metoda A3S tidak jauh beda dengan cara manusia berfikir. KGS dapat meminimalkan bias yang memungkinkan timbul pada pelaksanaan pengambilan keputusan dikarenakan adanya kepentingan-kepentingan tertentu.

Makalah (Sumari, Sereati, Ahmad, & Adiono, 2017) yang berjudul Cognitive Artificial Intelligence (CAI) Software based on Knowledge Growing

System (KGS) for Diagnosing Heart Block and Arrythmia merupakan makalah yang menjelaskan tentang penerapan Kognitif Perangkat Lunak Artificial Intelligence (CAI) untuk membantu membaca diagnosis kelainan jantung yang didapat dari grafik elektrokardiogram (EKG). Berdasarkan Knowledge Growing Algoritma sistem KGS, perangkat lunak CAI melakukan pemrosesan informasi hipotesis dan indikasi kelainan jantung yang disebabkan oleh Penyumbatan Jantung dan Aritmia. Hasil menunjukkan bahwa software ini dapat menganalisa kecenderungan kondisi hati berdasarkan pengamatan terkait indikasi dan hipotesis kelainan jantung, Keluaran dari perangkat lunak ini adalah sebuah grafik yang menunjukkan kondisi kesehatan jantung dan kecenderungannya kelainan jantung seperti yang diamati oleh EKG.

Penelitian (Sumari & Ahmad, 2017) yang berjudul *The Application of Cognitive Artificial Intelligence within C4ISR Framework for National Resilience* meneliti tentang penerapan sebuah produk baru *Cognitive Artificial Intelligence* (CAI) yang perspektif dalam *Artificial Intelligence* (AI) yang ditujukan untuk meniru cara kerja otak manusia dalam menghasilkan pengetahuan. CAI ini diterapkan dalam kasus penerapan *CAI for National Security With Knowledge Growing System* (KGS) sebagai engine sistem dalam pengambilan sebuah keputusan. Penulis menerapkan CAI ke kerangka kerja yang disebut *Cognitive Command*, control, komunikasi, komputer, intelijen, pengawasan dan reconnaissance dengan contoh diambil dari sebuah simulasi kasus kehidupan nyata di *domain Defense-Security*.

Penelitian (Sumari & Ahmad, 2017) yang berjudul *Cognitive Artificial Intelligence: Brain-Inspired Intelligent Computation in Artificial Intelligence* menunujkkan bahwa penulis melakukan pendekatan baru untuk meniru komputasi yang terjadi di dalam otak manusia untuk mendapatkan pengetahuan baru berdasarkan masukan yang dirasakan oleh sistem sensorik sistem yang diambil dari lingkungan hidup. Ketika proses ini dilakukan secara rekursif, file pengetahuan sistem menjadi lebih baru dan lebih baru lagi, maka dari itu hal tersebut disebut dengan pengetahuan berkembang. Pendekatan ini dirancang untuk agen itu memiliki kemampuan berfikir dan bertindak rasional seperti manusia. Model pendekatan kognitif menghasilkan model informasi pengolahan manusia dan teknik

untuk mendapatkan hasil yang maksimal kinerja harus diambil oleh agen kognitif. Metode ini dapat disebut sebagai A3S (Arwin-Adang-Aciek-Sembiring), yang agennya disebut sebagai *Knowledge Growing System* (KGS) dan metode yang terinspirasi dari otak ini membuka perspektif baru dalam AI yang penulis sebut sebagai *Cognitive Artificial Intelligence* (CAI).

Penelitian yang dilakukan oleh (Ahmadi, C. M., & Purnomo, 2017) yang berjudul pemilihan rudal permukaan ke permukaan pada KRI kelas sampari dengan menggunakan metode decision making trial and evaluation laboratory (DEMATEL) dan analytic network process (ANP) ini melakukan penelitian permasalahan tentang pemilihan rudal atas air yang tepat untuk mendukung kemampuan dalam bertempur. Peneliti memberikan solusi untuk menerapkan sistem pengambilan keputusan pengadaan senjata atas air menggunakan metode DEMATEL dan Analytic Netrwork Process (ANP) yang memiliki kemampuan untuk mengakomodasi keterkaitan antar kriteria dan juga alternatif. Hasil yang didapatkan peneliti atas penelitian ini adalah metode DEMATEL ini sangat membantu dalam menggambarkan hubungan yang terjadi antar kriteria maupun subkriteria secara jelas. Akan tetapi, karena dalam metode DEMATEL ini belum menghasilkan suatu prioritas alternative maka diperlukan suatu metode tambahan yaitu ANP, sehingga mendapatkan prioritas alternatif yang lebih akurat.

Penelitian yang dilakukan (Ahmadi, Sugiyanto, & Suharyo, 2017) dengan judul perancangan sistem pengukuran kinerja di Kolat Koarmatim dengan pendekatan DEMATEL, ANP dan metode *Integrated Performance Measurement System* (IPMS) memiliki permasalahan penelitian yaitu dalam upaya mengukur kinerja yang terintegrasi di suatu instansi yang berada di TNI AL pada umumnya hanya terpaku pada laporan pertanggungjawaban finansial. Pada penelitian ini, peneliti memberikan solusi untuk penerapan metode *Integrated Performance Measurement System* (IPMS) yang mana ditujukan untuk memperbaiki sistem pengukuran dari kinerja. Metode ini dirancang di Kolat Koarmatim untuk di lakukan analisa dalam pencapaian Program Kerja pada tahun 2015 dan 2016. Berdasarkan hasil pengolahan data dan implementasi perancangan pengukuran kinerja Kolat Koarmatim dengan metode IPMS, DEMATEL dan ANP yang

dilanjutkan dengan *scoring* menggunakan metode OMAX dan *Traffict Light* maka diperoleh hasil enam kriteria, enam belas sub kriteria dan dua puluh tiga KPI.

Makalah (Sumari & Ahmad, 2016) yang berjudul *Information Fusion as Knowledge Extraction in an Information Processing System* menyajikan tentang teknik baru untuk pengetahua, otak melakukan penarikan kesimpulan, otak menggabungkan informasi yang diperoleh dari lingkungan dengan pengetahuan yang sudah tersimpan di dalamnya. Inferensi yang diperoleh adalah pengetahuan baru tentang sistem sedangkan mekanisme yang terjadi disebut ekstraksi pengetahuan. Penulis telah mengembangkan sebuah metode yang disebut A3S (Arwin-Adang-Aciek-Sembiring) untuk ekstraksi pengetahuan yang telah diterapkan pada sistem kami yang disebut Sistem Pertumbuhan Pengetahuan (KGS).

Penelitian (Sumari & Ahmad, 2016) yang berjudul *Cognitive Artificial Intelligence The Fusion Of Artificial Intelligence and Information Fusion* merupakan penellitisn CAI yang merupakan produk baru perspektif dalam Artifial Intelligence (AI), yang menghadirkan hal baru konsep kecerdasan yang tidak hanya terbatas pada tiruan perilaku dan cara berfikir manusia tetapi juga untuk mengeksplorasi bagaimana manusia menumbuhkan ilmunya. Perkembangan CAI itu dimulai dengan menemukan metode baru yang mampu meniru kemampuan otak manusia untuk melakukan *Knowledge Growing* (KG). Berdasarkan pengamatan penulis yang panjang dan menyeluruh, perkembangan pengetahuan di otak manusia dilakukan dengan menggabungkan informasi yang diperoleh organ sensorik manusia dari lingkungan. Dalam penelitian ini, penulis menyajikan metode baru yang meniru mekanisme KG di dalam otak manusia yang disebut A3S (Arwin-Adang-Aciek-Sembiring).

Penelitian yang dilakukan (Goztepe, Dizdaroglu, & Sagiroglu, 2015) yang berjudul *new directions in military and security studies : artificial intelligence and military decision making process* ini melakukan penelitian dari permasalahan tentang mempersiapkan strategi militer baru yang digunakan untuk pertahanan keamanan negara. Dengan adanya kecerdasan buatan ini diharapkan dapat melakukan pengambilan keputusan yang tepat untuk pengambilan keputusan militer. Penelitian ini menerapkan pendekatan AIDEM dan beberapa arahan baru

untuk metodologi perencanaan yang mengintegrasikan suatu kegiatan keputusan untuk memahami situasi dan menerangi jalan untuk masa depan. Hasil dari penelitian tersebut mengahasilkan laporan bahwa ada berbagai macam komentar evaluasi tentang keputusan proses pembuatan dan aplikasi buatan intelijen. Pendekatan AIDEM akan menjadi sangat diperlukan dan akan menyediakan kelangsungan keamanan lingkungan hidup bagi tentara modern di masa yang akan datang jadi pendekatan ini haruslah ditingkatkan dan diprktikkan sejauh mungkin.

Penelitian milik (Suharyo & Purnomo, 2015) yang berjudul aplikasi metode analytic network process (ANP) dalam penentuan pengembangan LANAL (pangkalan TNI AL) menjadi LANTAMAL (pangkalan utama TNI AL) ini melakukan penelitian perihal pangkalan TNI AL yang memiliki peranan penting dalam menunjang keberhasilan suatu operasi di wilayah NKRI. Berbagai permasalahan yang dihadapi serta dinamika perkembangan lingkungan strategis yang relatif sulit diprediksi dan semakin kompleks yang membuat jajaran TNI AL untuk mempersiapkan diri sedini mungkin dalam menghadapi permasalahan yang bisa jadi ancaman yang dapat mengganggu stabilitas pertahanan keamanan negara. Dengan adanya permasalahan tersebut, peneliti memberikan solusi untuk menerapkan metode analytical network process pada sebuah sistem yang mana memiliki kemampuan untuk mengakomodasi keterkaitan antar kriteria atau alternatif. Hasil yang didapat berdasarkan penelitian yang dilakukan yaitu berupa nilai prioritas kriteria dan prioritas alternatif LANAL yang akan dikembangkan menjadi LANTAMAL.

Table 2.1 Tabel State-of-the-Art penelitian terdahulu

NO	Judul	Penulis	Nama Jurnal	Tahun	Problem	Metode	Hasil
1	Multi-Criteria	Beyza P.	Journal of	2020	Aplikasi yang	MCDM	Dapat membantu
	Decision	Yilmaz	Health		digunakan untuk		secara efektif
	Making	Hakan Tozan	Systems and		mengambil sebuah		dalam proses
	(MCDM)	Melis A.	Policies		keputusan di bidang		pengambilan
	Applications in	Karadayi			kesehatan militer. Misal		keputusan apapun
	Military				dalam proses		itu dibidang milter
	Healthcare				pengobatan suatu		dan itu telah
	Field				penyakit, penentuan		menjadi metode
					metode dalam		yang sering kali
					pengobatan yang tepat		digunakan di
					dapat mengendalikan		berbagai bidang
					keadaan penyakit secara		karena
					sementara.		penerapannya yang
							mudah.

2	Sistem	Sevty	SISFOTEK	2020	Melakukan perancangan	Composite	sistem tersebut
	penentuan	Nourmantana,			sebuah aplikasi untuk	Perfomance	dapat menghitung
	kenaikan	Wina Witanti,			menentukan lulus atau	Index (CPI)	dan menentukan
	pangkat	Asep Id			tidaknya prajurit dalam		perangkingan
	prajurit	Hadiana			melakukan berbagai		prajurit
	menggunakan				tahapan test, yang mana		berdasarkan nilai
	metode CPI				nilai dari setiap tahapan		yang diperoleh
	pada Kodim				memiliki syarat lulus		selama melakukan
	0619				nilai tersendiri dari		test kenaikan
	Purwakarta				setiap tahapan testnya,		pangkat sesuai
					test tersebut disebut		dengan bobot dan
					dengan samapta		kriteria yang sudah
							tersimpan dalam
							database.
	Towards	Arwin			Tuntutan sistem		Algoritma KGS
3	cognitive	Datumaya	TELOMNIKA	2020	instrumentasi cerdas	KGS(ASSA2010)	telah berhasil
3	artificial	Wahyudi	TELOWINIKA	2020	semakin meningkat.	KOS(ASSA2010)	diimplementasikan
	intelligence	Sumari,			Salah satu kemampuan		ke dalam (Field

	device: an	Catherine			sistem tersebut adalah		Programmable
	intelligent	Olivia Sereati,			kalibrasi otonom,		Gate Array) FPGA
	processor	Trio Adiono,			dimana sensor		dan juga
	based on	Adang			melakukan kalibrasi		melakukan
	human	Suwandi			secara mandiri akibat		simulasi untuk
	thinking	Ahmad			hasil pengukuran drift		menunjukkan
	emulation				yang dipengaruhi oleh		bahwa algoritma
					lingkungan. Perubahan		tersebut bekerja
					sistem analog ke sistem		dengan baik.
					digital semakin		
					meningkatkan ketepatan		
					sistem instrumentas.		
4	Sistem	Dinda Tamara	Jurnal Majalah	2020	Dalam melakukan	Addive Ratio	Perhitungan
	Pendukung	Azmi	Ilmiah		pemilihan polisi militer	Assessment	menggunakan
	Keputusan		Informasi dan		terbaik. Karena jumlah		metode tersebut
	Pemilihan		Teknologi		polisi militer yang		mendapatkan hasil
	Polisi Militer		Ilmiah (INTI)		banyak sekali memiliki		keputusan yang
	Terbaik				anggota terbaik		tertinggi 0,46 dan
	Menggunakan				dikarenakan tuntuan		peneliti berharap

	Metode				untuk meningkatkan		dengan adanya
	Additive Ratio				kinerja anggota untuk		sistem ini dapat
	Assesment				melaksanakan tugasnya.		mempermudah
	(ARAS)				Dalam melakukan		komandan dalam
					penyeleksian yang		melakukan
					masih dibilang sangat		pemilihan dan
					manual		dapat menghemat
							waktu dalam
							melakukan
							pemilihan tersebut.
5	Penentuan	Didit	Journal of	2020	Mendapatkan pilihan	DEMATEL -	Dapat membantu
	Kriteria dan	Herdiawan,	Science and		strategi yang tepat oleh	ANP	dalam
	Strategi dalam	Ahmadi,	Technology		TNI AL dalam rangka		permasalahan
	Menghadapi	Haryanto			peperangan kepulauan		tersebut dengan
	Peperangan	Wibowo			yang memerlukan kajian		hasil pengolahan
	Kepulauan				ilmiah terkait		data yang
	dengan				kompleksitas faktor		dilakukan
					yang mempengaruhi		diperoleh bobot

Pendekatan		kemenangan di dalam	prioritas alterna	atif
Dematel - ANP		peperangan. Terlebih	yang terpilih ya	itu
		lagi melihat kondisi	Decisive Bat	ttle
		geografi Indonesia	(0,06369),	
		sebagai Negara	Blockade	
		Kepulauan yang dapat	(0,06120) d	lan
		dijadikan sebagai	Fleet in Bei	ing
		peluang untuk	(0,04800). Sela	ain
		mememanangkan	itu dilaksanak	can
		sebuah pertempuran.	analisis BOO	CR
			(Benefit,	
			Opportunity, C	ost
			and Risk) diperol	leh
			hasil berdasark	can
			skenario <i>stana</i>	lar
			Fleet in Bei	ing
			dengan bol	bot
			0,56233, skena	rio
			pesimis terpi	lih

							alternatif	Decisive
							Battle	dengan
							bobot 0,09	9169 dan
							skenario	realistis
							terpilih	alternatif
							Decisive	Battle
							dengan	bobot
							0,02237.	
6	Analysis of	Lilik	INTENSIF	2020	Penyediaan produksi	MCDM	Penerapan	ketiga
	Multiple	Sumaryanti,			daging sapi untuk		metode	MCDM
	Criteria	Nurcholis			memenugi kebutuhan		untuk	kasus
	Decision				harus mendukung		pemilihan	bibit
	Making				ketersediaan. Untuk		sapi betina	a unggul
	Method for				pemilihan bibit sapi		menunjukl	kan
	Selection The				betina unggul haruslah		bahwa per	formansi
	Superior				sesuai dengan kriteria		ketiga	metode
	Cattle				yang menggunakan		tersebut	
					standar nasional dalam		menghasil	kan

					pemilihan	bibit sapi		alternatif	
					potong yan	g baik		rekomendasi	yang
								sama	pada
								percobaan	yang
								telah dilal	kukan,
								walaupun me	emiliki
								algoritma da	n cara
								kerja yang be	erbeda,
								dengan ket	elitian
								tingkat 80%.	
7	A	Keyan Miao	International	2020	Analisa 8	faktor utama	Copmrehensif	Mendapat	nilai
	Copmrehensif	Guoping	Conference on		yang m	empengaruhi	evaluation model	optimal dari	semua
	Evaluation	Jiang	Materials,		kapasitas k	ontaktor dan		indeks yang	dipilih
	Model Of		Control,		menentapka	an model		sebagai	urutan
	Military		Automation		evaluasi l	komprehensif		sasaran dan	nilai
	Equipment		and Electrical		kapasitas	kontraktor		yang to	erukur
	Contractor		Engineering		peralatan	militer		diurutkan	sesuai
	Capacity		(MCAEE		berdasarkar	n teori		dengan	derajat
	Based On Gray		2020)					devisiasi	antara

	Target					keputusan target abu-		nilai yang diukur
	Decision					abu		dan sasarannya.
	Theory							
8	Implementasi	Moh. E	adri	Jurnal JATIM	2020	Indonesia yang memiliki	Analytical	Faktor dan sub
	Metode	Tamam				negara kepulauan yang	Hierarcy Process	faktor yang paling
	Analytical					terdiri dari 17.504 pulau	(AHP)	mempengaruhi
	Hierarcy					dan memiliki pantai		terhadap keamanan
	Process (AHP)					sepanjang 81.290		laut Indonesia yaitu
	untuk Analisis					kilometer. Indonesia		faktor pertahanan
	Faktor					juga memiliki dua belas		dan kemaanan
	Keamanan					lembaga penegak		dengan sub faktor
	Laut Indonesia					hokum yang berada di		pengeluaran
						laut yang mana lembaga		anggaran belanja
						tersebut telah		pertahanan
						menjalankan tugas dan		nasional
						fungsinya. Akan tetapi,		
						itu semua belum		
						bersinergi yang dapat		

					megakibatkan rentan		
					terhadap keamanan laut.		
					Selain itu, masih banyak		
					faktor yang		
					mempengaruhi		
					keamanan laut, antara		
					lain seperti : faktor		
					politik, hukum,		
					ekonomi, sosail dan		
					budaya, pertahanan dan		
					keamaan, lingkungan		
					dan teknologi.		
9	Strategi	Rahmat	Journal	2020	Dilakukannya analisis	MCDM	Berdasarkan
	Pengambilan	Fadhil, M.	Seisteknologi		menunjukkan bahwa		penelitian yang
	Keputusan	Syamsul			Kementrian Pertahanan		sudah dilakukan,
	Untuk	Maarif, Aryos			Republik Indonesia		pendekatan
	Pengembangan	Nivada			sebagai kementrian yang		MCDM dengan
	Pertahanan				secara spesifik		berbagai metode
	Nasional				mengelola sejumlah		yang telah

	Menggunakan				agenda kebijakan		dikembangkan saat
	Multi Criteria				pertahanan dan		ini dapat digunakan
	Decision				memerlukan penerapan		dalam membanu
	Making :				metode MCDM untuk		memudahkan,
	Pembelajaran				pengambilan keputusan		mempercepat,
	Dari				strategis.		memperjelas dan
	Departemen						juga
	Pertahanan						mempersingkat
	Amerika						pengambilan
	Serikat						keputusan startegi
							yang diambil.
10	Sistem	Debora	Jurnal Pelita	2019	Di daerah perbatasan	Multi Attribute	Dalam
	Pendukung	Roliaty	Informatika		nasional yang	Utility Theory	pengambilan
	Keputusan	Gultom, Fince			merupakan bagian		keputusan untuk
	Penempatan	Tinus			wilayah yang terpencil		penempatan
	Prajurit TNI	Waruwu			dan rendah		prajurit TNI AD di
	AD Di Daerah				aksesibilitasnya oleh		daerah perbatasan
	Perbatasan				modal transportasi		menjadi lebih
	Menggunakan				umum,terbelakang dan		terpercinci dan

Metode Multi		masih belum	cepat	untuk
Attribute		berkembang secara	melakukan	proses
		mantap, kritis dan rawan	pemilihan p	rajurit.
		dalam ketertiban dan		
		keamanan. Namun,		
		kawasan perbatasan		
		sering dilihat sebagai		
		periphery suatu negara		
		karena letaknya yang		
		jauh dari ibu kota		
		provinsi apalagi ibu kota		
		negara, maka dari itu		
		diperlukan sebuah		
		sistem untuk bisa		
		mengatur prajurit yang		
		mana yang sesuai		
		dengan kriteria yang		
		dapat ditempatkan di		
		daerah perbatasan		

11	Sistem	Rizky Amalia	Jurnal	Riset	2019	Dalam melakukan	MOORA	Dalam	penera	pan
	Pendukung	Siregar	Kompute	er		seleksi dalam pemilihan		untuk	menent	uka
	Keputusan					personel membutuhkan		pemiliha	an perso	onel
	Pemilihan					waktu yang sangat lama		dapat	diterap	kan
	Personel Yon					karena harus sesuai		dengan	b	aik.
	Zipur I Dhira					dengan kriteria yang		Metode	ini mar	npu
	Dharma Ke					sudah ditetapkan		menunju	ıkkan	
	Daerah Rawan					berdasarkan alternatif		bahwa	salah	satu
	Konflik					yang ada. Sebelumnya,		alternati	f	
	Menerapkan					sudah terdapat sistem		merupak	kan	
	Metode					yang dapat mengatasi		prioritas	3	dari
	MOORA					permasalahan ini, akan		sebuah k	keputus	an.
						tetapi sistem yang				
						digunakan belum				
						seutuhnya dapat berjalan				
						dengan baik, sehingga				
						mendapatkan hasil yang				
						kurang akurat.				

Ī	12	Sistem	Debora	Jurnal	Pelita	2019	Di da	erah	perbatasan	Multi	Attribute	Dalam	
		Pendukung	Roliaty	Informa	tika		nasiona	al	yang	Utility	Theory	pengambila	n
		Keputusan	Gultom, Fince				merupa	ıkan	bagian			keputusan	untuk
		Penempatan	Tinus				wilayah	n yan	g terpencil			penempatan	
		Prajurit TNI	Waruwu				dan		rendah			prajurit TNI	AD di
		AD Di Daerah					aksesib	ilitasn	iya oleh			daerah per	batasan
		Perbatasan					modal t	transp	ortasi			menjadi	lebih
		Menggunakan					uı	mum,	terbelakang			terpercinci	dan
		Metode Multi					dan	masil	h belum			cepat	untuk
		Attribute					berkem	bang	secara			melakukan	proses
							mantap	, kritis	s dan rawan			pemilihan p	rajurit.
							dalam	keter	rtiban dan				
							keaman	nan.	Namun,				
							kawasa	ın	perbatasan				
							sering	diliha	at sebagai				
							periphe	ery su	atu negara				
							karena	letak	knya yang				
							jauh	dari	ibu kota				
							provins	si apala	agi ibu kota				

					negara, maka dari itu		
					diperlukan sebuah		
					sistem untuk bisa		
					mengatur prajurit yang		
					mana yang sesuai		
					dengan kriteria yang		
					dapat ditempatkan di		
					daerah perbatasan		
13	Pemilihan	Hozairi,	Jurnal Ilmiah	2018	Indonesia memiliki	Fuzzy AHP dan	Hasil penilaian
	Model	Buhari, Heru	NERO		tingkat kerawanan yang	Fuzzy Topsis	prioritas model
	Keamanan	Lumaksono,			tinggi di antaranya		pengamanan laut
	Laut Indonesia	Marcus			illegal fishing, illegal		diperoleh sebagai
	Dengan Fuzzy	Tukan,			logging, illegal mining,		berikut: [1] Single
	AHP dan Fuzzy	Syariful Alim			illegal migrant, human		Agency Multy Task
	TOPSIS				trafficking dan		= 0.404, [2] <i>Multy</i>
					penyelundupan.		Agency Single Task
					Sehingga Indonesia		= 0.295, [3] <i>Single</i>
					memerlukan model		Agency Single Task
					pengamanan laut yang		= 0.228 dan [4]

					mampu		Multy	Agency
					mengoptimalkan		Multy Ta	sk =
					resource yang ada.		0.073. Oleh	karena
					Proses pemilihan model		itu, peneliti	ian ini
					pengamanan laut		merekomeno	dasikan
					tidaklah mudah karena		model penga	amanan
					harus		laut yang	paling
					mempertimbangkan		cocok	dengan
					banyak kriteria sehingga		kondisi Ind	donesia
					keputusan yang diambil		saat ini	adalah
					tidak salah		"Single	Agency
							Multy	Task"
							dengan	bobot
							prioritas 0.4	04
14	Multiple	Rizal Munadi,	TELKOMIKA	2018	Terdapat celah dalam	SAW	Hasil menun	njukkan
	Attribute	Mukhroji,			keamanan pada website		bahwa peng	gunaan
	Decision	Syahrial,			yang memiliki potensi		CMS lebih	n baik
	Making	Ernita Dewi			untuk dieksploitasi bagi		dibandingka	ın
	dengan	Meutia					website	yang

	Metode Simple				kriminal teknologi		dibangun tanpa
	Additive				informasi.		menggunakan
	Weighting						CMS.
	untuk						
	Pemeringkatan						
	Kerentanan						
	Keamanan						
	Website						
15	Aplikasi	Bima	Jurnal Pelita	2018	Dalam penyampaian	CAI	Aplikasi ini dapat
	Pembelajaran	Prabowo,	Informatika		materi pembelajaran		digunakan untuk
	Epidemiologi	Nelly Astuti			dengan sistem catat		penyusunan materi
	Gizi	Hasibuan,			materi, menjelaskan,		pembelajaran
	Menggunakan	Putri			kemudian dalam		dengan optimal
	Metode	Ramadhani			pemberian tugas masih		baik dari sisi
	Computer				dengan cara yang		pengajar maupun
	Assisted				tradisoional		peserta ajar
	Intruction						
	(CAI)						

16	Penelitian	Rika Nofitri	Journal of	2018	Dalam upaya menaikkan	AHP	Mempermudah
	pemilihan		Science and		pangkat seorang prajurit		bagi staff untuk
	prajurit terbaik		Social		mengalami banyak		membuat laporan
	menggunakan		Research		sekali kendala-kendala		penilaian pangkat
	metode AHP				mengenai penentuan		dan memasukkan
					nilai pembobotan pada		data prajurit
					sistem di Kantor Pa		menggunakan
					Sipers.		pemrograman
							Visual Basic.Net
							dengan database
							MySQL sehingga
							data yang terdapat
							dalam sistem lebih
							optimal dan
							terorganisir.
17	Cognitive	Arwin	IntechOpen	2018	Pendekatan untuk	KGS (A3S)	KGS mampu
	Artificial	Datumaya			meniru komputasi yang		mengembangkan
	Intteligence :	Wahyudi			terjadi di dalam otak		ilmunya dari nol
	Concept and	Sumari,			manusia untuk		sampai batas

Applications	Adang	r	mendapatkan	sebuah	tertentu	tergantung
for Humankind	Suwandi	F	pengetahuan	baru dan	pada jun	nlah waktu
	Ahmad	r	menjadikan	ilmu	observas	i. Semakin
		t	tersebut semak	kin baru.	banyak	informasi
					yang dic	olah, maka
					semakin	banyak
					pengetah	uan yang
					bisa	didapat,
					diperolel	n dan
					semakin	cerdas
					jadinya.	
					Pengetah	nuan ini
					juga le	bih tepat
					dalam 1	mengambil
					sebuah	keputusan
					dan tind	akan yang
					dapar dia	ambil oleh
					keputusa	n tersebut

18	Multiagent	Arwin	SENATIK	2017	Konsep pemanfaatan A	A3S	Menyajikan teknik
	Collaborative	Datumaya	2017		32aradigm Multiagent		untuk
	Computation	Wahyudi			Collaborative		mendapatkan
	For Aircraft	Sumari,			Computation (MCC)		informasi yang
	Maintenance	Adang			dalam mendukung		komprehensif
	System	Suwandi			proses pengambilan		sebagai dasar untuk
		Ahmad			keputusan dalam		pengambilan
					perawatan pesawat		keputusan yang
					selama misi		disebut dengan
					berkelanjutan di		metode fusi
					pangkalan terpencil		informasi-
							inferencing A3S
							(Arwin-Adang-
							Aciek Sembiring).
19	Aplikasi	Arwin	ANGKASA	2017	Pemilihan Helikopter k	KGS A3S	Hasil komputasi
	Cognitive	Datumaya	CENDEKIA-		Serang Menggunakan		KGS dengan
	Artificial	Wahyudi	2017		KGS dengan Metoda		metoda A3S tidak
	Intelligence	Sumari			A3S.		jauh beda dengan
							cara manusia

								berfikir.	KGS
								dapat	
								meminimalka	an
								bias	yang
								memungkink	an
								timbul	pada
								pelaksanaan	
								pengambilan	
								keputusan	
								dikarenakan	
								adanya	
								kepentingan-	
								kepentingan	
								tertentu.	
20	Cognitive	Arwin	IEEE	2017	Penerapan	Kognitif	KGS A3S	Bahwa softwa	
	Artificial	Datumaya			Perangkat	Lunak		dapat menga kecenderunga	
	Intelligence	Wahyudi			Artificial	Intelligence		kondisi	hati
	(CAI) Software	Sumari,			(CAI) untul	k membantu		berdasarkan	
	based on	Adang			membaca	diagnosis		pengamatan i indikasi	terkait dan

	Knowledge	Suwandi			kelainan jantung yang		hipotesis kelainan
	Growing	Ahmad			didapat dari grafik		jantung, Keluaran
		1 1111111111					dari perangkat
	System (KGS)				elektrokardiogram		lunak ini adalah
	for Diagnosing				(EKG)		sebuah grafik yang
	Heart Block						menunjukkan
							kondisi kesehatan
	and Arrythmia						jantung dan
							kecenderungannya
							kelainan jantung
							seperti yang diamati oleh EKG.
21	Cognitive	Arwin	IEEE	2017	Pendekatan baru untuk	KGS A3S	Model pendekatan
21			ILLL	2017		KOS ASS	kognitif
	Artificial	Datumaya			meniru komputasi yang		menghasilkan
	Intelligence:	Wahyudi			terjadi di dalam otak		model informasi
	Brain-Inspired	Sumari,			manusia untuk		pengolahan
	Intelligent	Adang			mendapatkan		manusia dan teknik
					-		untuk
	Computation	Suwandi			pengetahuan baru		mendapatkan hasil yang maksimal
	in Artificial	Ahmad			berdasarkan masukan		yang maksimal kinerja harus
	Intelligence				yang dirasakan oleh		diambil oleh agen
					sistem sensorik sistem		kognitif. Metode
					Sistem Sensorik Sistem		ini dapat disebut
							sebagai A3S

					yang diambil dari	(Arwin-Adang-Aciek-Sembiring), yang agennya disebut sebagai Knowledge Growing System (KGS) dan metode yang terinspirasi dari otak ini membuka perspektif baru dalam AI yang penulis sebut sebagai Cognitive Artificial Intelligence (CAI).
22	The Application of Cognitive Artificial Intelligence within C4ISR	Arwin Datumaya Wahyudi Sumari, Adang	IEEE	2017	Penerapan CAI for National Security With Knowledge Growing System (KGS) sebagai engine sistem dalam pengambilan sebuah keputusan. Penulis menerapkan CAI ke kerangka kerja yang	Sebuah produk baru Cognitive Artificial Intelligence (CAI) yang perspektif dalam Artificial

	Framework for	Suwandi			disebut Cognitive		Intelligence (AI)
	National	Ahmad			Command, control, komunikasi, komputer,		yang ditujukan
	Resilience				intelijen, pengawasan		untuk meniru cara
					dan reconnaissance		kerja otak manusia
					dengan contoh diambil dari sebuah simulasi		dalam
					kasus kehidupan nyata		menghasilkan
					di domain Defense- Security.		pengetahuan
23	Perancangan	Ahmadi, Dedi	ASRO Jurnal	2017	Dalam upaya mengukur	DEMATEL, ANP	Berdasarkan hasil
	Sistem	Sugiyanto,			kinerja yang terintegrasi	dan Metode	pengolahan data
	Pengukuran	Okol Sri			di suatu instansi yang	Integrated	dan implementasi
	Kinerja Di	Suharyo			berada di TNI AL pada	Performance	perancangan
	Kolat Koartim				umumnya hanya terpaku	Measurement	pengukuran kinerja
	dengan				pada laporan	System (IPMS)	Kolat Kormatim
	Pendekatan				pertanggungjawaban		dengan metode
	DEMATEL,				finansial.		IPMS, DEMATEL
	ANP dan						dan ANP yang
	Metode						dilanjutkan dengan
	Integrated						scoring

	Performance						menggunakan
	Measurement						metode OMAX
	System (IPMS)						dan Traffict Light
							maka diperoleh
							hasil enam kriteria,
							enam belas sub
							kriteria dan dua
							puluh tiga KPI.
24	Pemilihan	Ahmadi,	JOURNAL	2017	Pemilihan rudal atas air	Decision Making	Metode
	Rudal	Udisubakti C.	ASRO		yang tepat untuk	Trial and	DEMATEL ini
	Permukaan ke	M., Joni Hari			mendukung kemampuan	Evaluation	sangat membantu
	Permukaan	Purnomo			dalam bertempur.	Laboratory	dalam
	Pada KRI						menggambarkan
	Kelas Sampari						hubungan yang
	dengan						terjadi antar
	Menggunakan						kriteria maupun
	Metode						subkriteria secara
	Decision						jelas. Akan tetapi,
	Making Trial						karena dalam

	and Evaluation						metode
	Laboratory						DEMATEL ini
	(DEMATEL)						belum
	dan analytic						menghasilkan
	network						suatu priotitas
	process (ANP)						alternatif maka
							diperlukan suatu
							metode tambahan
							yaitu ANP,
							sehingga
							mendapatkan
							priotitas alternatif
							yang lebih akurat.
25	Perancangan	Kresna Arya	Universitas	2017	Untuk menentukan	AHP dan SAW	Rekomendasi
	Sistem	Prasertya,	Jendral		penempatan kecabangan		penempatan
	Pengambilan	Wina Witanti,	Ahmad Yani		calon siswa yang		kecabangan untuk
	Keputusan	Ridwan Ilyas			memakan waktu yang		calon siswa. Untuk
	Penempatan				cukup lama, selain itu		pengujian kualitas
	Kecabangan				kriteria penempatan		dari sistem yang

	TNI AD				kecabangan siswa,		dibuat oleh peneliti
	Menggunakan				perbedaan kriteria bobot		mendapatkan hasil
	Metode				pada setiap		nilai mencapai
	Analytic				kecabangannya, human		85,65% yang
	Hierarchy				error, dan kekeliruan		artinya telah
	Process dan				dalam skoring, dengan		memenuhi
	Simple				adanya sebuah sistem		fungsionalitas dan
	Additive				pendukung keputusan		sesuai dengan
	Weighting				sebagai alat bantu, dapat		kebutuhan.
					menyelesaikan masalah		
					tersebut.		
26	Information	Arwin	SEEK Digital	2016	Tentang teknik baru	KGS	Pengembangan
	Fusion as	Datumaya	Library		untuk pengetahuan, otak		sebuah metode
	Knowledge	Wahyudi			melakukan penarikan		yang disebut A3S
	Extraction in	Sumari,			kesimpulan, otak		(Arwin-Adang-
	an Information	Adang			menggabungkan		Aciek-Sembiring)
	Processing	Suwandi			informasi yang		untuk ekstraksi
	System	Ahmad			diperoleh dari		pengetahuan yang
					lingkungan dengan		telah diterapkan

				pengetahuan yang sudah tersimpan di dalamnya		pada sistem kami yang disebut Sistem Pertumbuhan Pengetahuan (KGS).
27 Cognitive Artificial Inttelgence The Fusion Artificial Intelligence and Information Fusion	n Of Sumari, Adang Suwandi Ahmad	IEEE	2016	CAI yang merupakan produk baru perspektif dalam Artificial Intelligence (AI), yang menghadirkan hal baru konsep kecerdasan yang tidak hanya terbatas pada tiruan perilaku dan cara berfikir manusia tetapi juga untuk mengeksplorasi bagaimana manusia menumbuhkan ilmunya	KGS A3S	Menyajikan metode baru yang meniru mekanisme KG di dalam otak manusia yang disebut A3S (Arwin-Adang- Aciek-Sembiring).

28	Aplikasi	Okol Sri	JOURNAL	2015	Berbagai permasalahan	Analytic Network	Berupa nilai
	Metode	Suharyo, Joko	ASRO		yang dihadapi serta	Process (ANP)	prioritas kriteria
	Analytic	Purnomo			dinamika perkembangan		dan prioritas
	Network				lingkungan strategis		alternatif LANAL
	Process (ANP)				yang relatif sulit		yang akan
	dalam				diprediksi dan semakin		dikembangkan
	Penentuan				kompleks yang		menjadi
	Pengembangan				membuat jajaran TNI		LANTAMAL.
	LANAL				AL untuk		
	(Pangkalan				mempersiapkan diri		
	TNI AL)				sedini mungkin dalam		
	menjadi				menghadapi		
	LANTAMAL				permasalahan yang bisa		
	(Pangkalan				jadi ancaman yang dapat		
	Utama TNI				mengganggu stabilitas		
	AL)				pertahanan keamanan		
					negara.		
29	New	Kerim	International	2015	Mempersiapkan strategi	AIDEM	Mengahasilkan
	Directions In	Goztepe,	Journal of		militer baru yang		laporan bahwa ada

Military and	Vural	Information	digunakan untuk	berbagai macam
Security	Dizdaroglu,	Security	pertahanan keamanan	komentar evaluasi
Studies :	Saref	Science	negara. Dengan adanya	tentang keputusan
Artificial	Sagroglu		kecerdasan buatan ini	proses pembuatan
Intelligence			diharapkan dapat	dan aplikasi buatan
and Military			melakukan pengambilan	intelijen.
Decision			keputusan yang tepat	Pendekatan
Making			untuk pengambilan	AIDEM akan
Process			keputusan militer.	menjadi sangat
				diperlukan dan
				akan menyediakan
				kelangsungan
				keamanan
				lingkungan hidup
				bagi tentara
				modern di masa
				yang akan datang
				jadi pendekatan ini
				haruslah

_

			ditingkatkan da
			diprktikkan sejau
			mungkin.

2.2 Dasar Teori

2.2.1 Sistem Pengambilan Keputusan

Konsep dari Sistem Pengambilan Keputusan pertama kalinya diperkenalkan pada awal tahun 1970-an oleh Michael S. Scott Morton dengan istilah *Decision System*. Konsep pada Sistem Pengambilan Keputusan ini ditandai dengan adanya sistem yang interaktif berbasis komputer yang dapat membantu dalam pengambilan keputusan untuk bertindak. Pemanfaatan data dan model untuk menyelesaikan beberapa masalah yang tidak terstruktur. SPK dirancang sebagai media untuk mendukung seluruh tahap pengambilan keputusan mulai dari cara mengidentifikasi masalah, memilih data yang relevan, menentukan pendekatan yang digunakan dalam proses pengambilan keputusan, hingga dapat mengevaluasi pemilihan alternatif (Limbong, Muttaqin, Iskandar, & dkk, 2020). Adapun tujuan dari penerapan SPK ini antara lain:

- Membantu manager dalam pengambilan keputusan.
- Memberikan dukungan atas pertimbangan manager.
- Meningkatkan efektivitas keputusan yang diambil manager lebih daripada perbaikan efisiennya.
- Kecepatan komputasi. Komputer memungkinkan para pengambil keputusan untuk melakukan banyak komputasi secara cepat dengan biaya yang rendah.
- Peningkatan produktivitas. Membangun suatu kelompok dan memungkinkan para anggotanya untuk berada diberbagai lokasi yang berbeda-beda.
- Dukungan kualitas. Komputer bisa meningkatkan kualitas keputusan yang dibuat.
- Berdaya saing. Manajemen dan pemberdayaan sumber daya perusahaan.
- Mengatasi keterbatasan kognitif dalam pemrosesan dan penyimpanan.

2.2.2 Komando dan Kendali

Komando dan kendali (Sufaat, 2012) merupakan proses dan sarana bagi

pelaksanaan wewenang dan arahan komandan yang ditunjuk atas kekuatan yang diberikan kepadanya untuk melaksanakan misi. Komando dan Kendali yang efektif merupakan persyaratan yang paling mendasar untuk penggunaan kekuatan udara secara efisien. Semua kekuatan militer harus mempunyai struktur kodal untuk menjamin bahwa kekuatan yang tersedia digunakan menurut arahan dan wewenang yang tepat dengan cara yang paling efisien untuk mencapai hasil yang diinginkan.

- Prinsip Dasar Komando dan Kendali

Pengalaman menujukkan bahwa kesatuan komando sangat penting untuk penggunaan kekuatan udara secara efektif. Kekhasan kekuatan udara yaitu kecepatan, daya jangkau dan fleksibilitas memungkinkan kekuatan udara digunakan untuk mencapai beberapa sasaran baik dalam tugas (*tasks*) yang sama maupun berbeda. Hal seperti ini apabila penggunaannya tidak direncanakan secara matang akan mengakibatkan terpecahnya kekuatan dan menimbulkan pemborosan. Guna menghindari hal seperti tersebut di atas, maka perlu adanya kesatuan tindak dengan prinsip-prinsip dasar sebagai berikut:

- 1. Kesatuan komando dan kendali.
- 2. Sentralisasi pada tingkat kebijakan.
- 3. Desentralisasi pada pelaksanaan di lapangan.
- Kesatuan Komdando dan Kendali

Kesatuan Kodal akan menjamin integritas usaha dan penggunaan kekuatan sesuai dengan prioritas yang telah ditetapkan. Kesatuan Kodal juga memungkinkan dilaksanakannya perubahan-perubahan rencana maupun pelaksanaan serta pengaturan kembali kekuatan-kekuatan yang disesuaikan dengan situasi dan kondisi operasi. Konsentrasi kekuatan udara harus benar-benar dapat diarahkan ke daerah kritis dalam waktu singkat dan tepat. Kesatuan Kodal sangat esensial apabila kekuatan udara dipergunakan pada operasi gabungan guna menghindari:

- Terpecahnya kekuatan menjadi kekuatan-kekuatan kecil yang akan mengurangi daya gempur, karena kekuatannya tidak terkonsentrasi.
- Penggunaan kekuatan gabungan yang tidak teratur dan tidak terkoordinasi.
- Sentralisasi pada Tingkat Kebijakan

Kesatuan usaha akan mencapai hasil yang maksimal bila kewenangan kebijakan/pengambilan keputusan Kodal berada di pucuk pimpinan tertinggi, yaitu panglima atau komandan. Sentralisasi kebijakan masih tetap harus mempertimbangkan faktor efisiensi guna menentukan strata yang paling tepat dalam mengambil keputusan. Hal-hal yang perlu ditangani meliputi:

- 1. Tanggung jawab operasional.
- 2. Penentuan tujuan dan sasaran operasional yang ingin dicapai.
- 3. Sistem pengendalian yang tersedia guna mendukung penyelesaian tugas pokok serta pengendalian aset kekuatan udara yang ada.

4. Pendayagunaan fungsi sumber daya udara/kekuatan udara.

- Desentralisasi Pelaksanaan

Dalam rentang kendali yang sangat luas, tidak mungkin dapat ditangani sendiri oleh seorang panglima/komandan. Untuk itulah pentingnya desentralisasi dengan cara melimpahkan wewenang tertentu dalam pelaksanaan tugas (tasks) maupun misi (missions). Desentralisasi memungkinkan komandan bawahan dapat secara luwes mengembangkan pikiran atau inisiatifnya atas dasar kebijakan pemimpin yang telah ditetapkan. Dalam organisasi pada eselon pimpinan perlu dilengkapi dengan perangkat kontrol agar pelaksanaan desentralisasi tidak menyimpang dari tujuan dan sasaran. Penyimpangan bisa dihindari apabila tujuan dan sasaran operasi telah benar-benar dipahami oleh para pelaksana pada setiap tingkat di jajaran.

2.2.3 Knowledge *Growing System* (KGS)

KGS adalah sistem yang mampu mengembangkan pengetahuannya seiring dengan bertambahnya informasi yang diterimanya seiring berjalannya waktu. KGS bertujuan untuk meniru mekanisme pengetahuan yang berkembang di dalam otak manusia (Sumari, Ahmad, Wuryandari, & Sembiring, 2012). Perkembangan CAI dipicu oleh ditemukannya ciri-ciri kognitif yang mana ditunjukkan oleh otak saat menghasilkan pengetahuan baru. Mekanisme tersebut dinamakan sebagai *knowledge grow* (KG) yang mana pengetahuan tersebut diperoleh setelah otak mengekstrasi kesimpulan baru dari fusi informasi yang disampaikan dari organ sensorik setelah melakukan interaksi dengan dunia. Oleh karena itu disebutlah sebuah sistem yang mana memiliki sebuah kemampuan untuk menumbuhkan ilmunya sendiri sebagai sistem pertumbuhan pengetahuan (KGS) beserta metode kumputasinya. Untuk komputasi itu sendiri memiliki sebuah teorema KGS yaitu:

- 1. Jumlah total nilai kolom = jumlah nilai dalam kolom dibagi jumlah baris.
- 2. Jumlah total nilai baris = 1.

Pengembangan KGS sebagai mesin utama *Cognitive* AI membuka peluang untuk menciptakan sistem instrumentasi yang cerdas dimana kecerdasannya ditunjukkan dengan kemampuan kognitif yang ditanamkan di dalamnya. Sistem instrumentasi cerdas semacam ini dapat diwujudkan dengan menyematkan prosesor yang memiliki sifat kognitif, sebagai pengendali utama sistem. Konsep dasar KGS adalah meniru cara otak manusia mengembangkan pengetahuan

baru dari informasi yang disampaikan oleh organ sensorik manusia yang dikumpulkan dari fenomena interaksi manusia.

Proses untuk memperoleh pengetahuan baru dimulai dengan merasakan fenomena tersebut dan menerima informasi tentangnya dari semua organ sensorik. Hal ini hanya dapat dilakukan dengan melakukan interaksi dengan fenomena yang diamati menggunakan satu atau lebih alat indera. Sebagian besar informasi dari satu sensor hanya dapat memberikan sedikit pengetahuan tentang fenomena tersebut dengan mendapatkan lebih banyak informasi dari berbagai organ sensorik. Informasi yang disampaikan dari organ sensorik digabungkan untuk memperoleh informasi yang komprehensif. Setiap informasi yang menyatu akan memiliki nilai probabilitas atau *Degree of Certainty* (DoC) tersendiri yang merepresentasikan pengetahuan yang diperoleh oleh KGS tentang fenomena tersebut. Setiap nilai probabilitas informasi yang komprehensif kemudian menjadi pengetahuan baru yang diukur dengan DoC.

DoC merepresentasikan nilai kepastian untuk setiap pengetahuan baru bergantung pada informasi organ sensorik yang telah menyatu. DoC juga menampilkan kombinasi terbaik dari data sensor dan hipotesis yang mungkin terjadi terkait dengan fenomena yang diamati. (Sumari, Adiono, Sereati, & et., al, 2020).

Proyek	Jenis Bekisting	Waktu Pengerjaan (menit)	Tenaga Kerja yang Dibutuhkan (orang)	
World Trade Center 3, Jakarta	Sistem (PERI)	40	3	
Ruko Grand Kota Bintang, Bekasi	Semi Sistem	135	6	
Ruko Gajah Mada	Konvensional	165	6	

Gambar 2.1 Ilustrasi sederhana mekanisme penumbuhan pengetahuan pada manusia (Sumari & Ahmad, 2017)

2.2.4 Metode ASSA2010

Sitem Berpengetahuan-Tumbuh terinspirasi otak manusia adalah agen kognitif yang dilengkapi mekanisme penumbuhan pengetahuan sebagai karakteristik utama kecerdasannya. Penumbuhan suatu pengetahuan adalah satu bentuk pembangunan kognitif dengan caa akuisisi pengetahuan dan informasi mengenai satu fenomena yang diobservasi melalui interaksi dengannya selama satu perioda waktu yang signifikan. Dapat ditinjau dari perspektif kognisi, pada umumnya otak bekerja secara probabilistic dan pemodelannya menggunakan pendekatan Metoda Inferensi Bayes (MIB) yang dikombinasikan dengan *Maximum A Posteriori* (MAP) atau MIB + MAP. Informasi dari multisumber informasi berupa kombinasi indikasi-indikasi mengenai satu fenomena yang diamati akan dibandingkan dengan pengetahuan berupa hipotesa-hipotesa dalam ingatan otak guna membangkitkan pengetahuan baru. Mekanisme ini, disebut dengan komputasi multi-hipotesa multi-indikasi.

Dengan memperhatikan keterbatasan MIB + MAP, dibangunlah sebuah metoda fusi penginferensian-informasi berbasiskan pada metoda fusi informasi *Maximum Score of the Total Sum of Joint Probabilities* (MJSP). Berikut Persamaan matematika dari metoda *Maximum Score of the Total Sum of Joint Probabilities* (MSJP) menunjuk pada Persamaan 1.

$$P(A_i \mid B_1 \& ... \& B_m)_{estimate} = \left\{ \frac{\sum_{j=1}^{m} P(A_i \mid B_i)}{m} \right\}$$
 (1)

dengan $i=1,2,\ldots$, n adalah jumlah hipotesa yang diletakkan secara kolom dan $j=1,2,\ldots$, m adalah jumlah indikasi yang diletakkan secara baris. Total sum of joint probabilities ditunjukkan oleh operasi matematika Pm j=1 P (Ai |Bj|). Faktor pembobotan m adalah jumlah multi indikasi apriori B yang mempengaruhi nilai-nilai probabilitas multi hipotesa A (Sumari, W., & Safitri, 2019)

Adanya keterbatasan MIB + MAP, dibangun metoda fusi penginferensian-informasi berbasiskan pada metoda fusi informasi *Maximum Score of the Total Sum of Joint Probabilities* (MJSP). Metoda tersebut diberi nama yaitu metoda Observasi Multi-Waktu Arwin-Adang-Aciek-Sembiring (OMA3S) untuk metoda dinamisnya (Sumari A. D., 2019) dan metoda penumbuhan pengetahuan berbasis metoda fusi penginferensian-informasi A3S. Berikut Persamaan (2) metoda dari A3S:

$$P(B_{j} \oplus A_{i}) = \frac{1}{n} \sum_{i=1}^{\infty} \left(\frac{P(A_{i} \mid B_{j}) P(B_{j})}{\sum_{k=1}^{n} P(A_{i} \mid B_{k}) P(B_{k})} \right)$$
(2)

 $P(B_j \coprod A_i)$) j i + adalah Distribusi Probabilitas Pengetahuan Baru (DPPB) dengan i ,...,n =1 adalah multi-indikasi dan j ,...,m =1 adalah multi-hipotesa. Pengetahuan baru diperoleh dengan mengaplikasikan Persamaan (3) dengan = $\max_{j=1,...,m} [...]$.

$$P(\psi)_{estimate} = |P(\psi_i)| \tag{3}$$

Memfusikan informasi hasil persepsi sensor-sensor terhadap fenomena yang diamati menggunakan metoda A3S sesuai Persamaan (4). Informasi terfusi adalah kombinasi informasi dari dua atau lebih sensor. Tidak ada fusi dari informasi yang berasal dari sensor tunggal.

$$P(\Psi_{i}^{j}) = \frac{\sum_{i=1}^{\delta} P(\vartheta_{i}^{j})}{\delta}$$
(4)

 $P(\Psi_i^j)\epsilon\Psi$ adalah DPPB dimana i ,..., =1,..., δ adalah jumlah sensor dan j ,..., = 1,..., λ adalah jumlah informasi terfusi atau hipotesa, dimana $\lambda = (2^{\delta} - \delta) - 1$. Pengetahuan baru yang menjelaskan fenomena yang diamati direpresentasikan sebagai nilai maksimum DPPB yang ditunjukkan pada Persamaan (5).

$$P(\psi)_{estimate} = \left| P(\psi_i) \right| \tag{5}$$

Menghasilkan penginferensian dari informasi terfusi. Penginferensian adalah ekstraksi DPPB. Dari pengamatanpengamatan yang dilakukan sistem, akan diperoleh DPPB sebagai fungsi dari waktu pengamatan, Γ atau $\Psi = f(\Gamma)$. Penginferensian dilakukan dengan mengaplikasikan Persamaan (6).

$$P(\phi_{\Upsilon}^{j}) = \begin{cases} 1, & jika \ P\left(\Psi_{\Upsilon}^{i}\right) > \frac{\sum_{j=1}^{\lambda} P\left(\Psi_{\Upsilon}^{i}\right)}{\lambda} \\ 0, & jika \ P\left(\Psi_{\Upsilon}^{i}\right) \leq \frac{\sum_{j=1}^{\lambda} P\left(\Psi_{\Upsilon}^{i}\right)}{\lambda} \end{cases}$$
(6)

 $P(\phi_{\Upsilon}^{j})$ ε Π penginferensian-informasi pada waktu pengamatan $\gamma=1,\ldots,\Gamma.$

Memfusikan penginferensian-informasi dari beberapa waktu pengamatan untuk memperoleh penginferensian terfusi, yakni pengetahuan baru sistem yang direpresentasikan dalam bentuk Distribusi Probabilitas Pengetahuan Baru terhadap Waktu Pengamatan (DPPBtW), yang diperoleh dengan mengaplikasikan metoda OMA3S sesuai Persamaan (7).

$$P(\theta_j) = \frac{\sum_{i=1}^{\delta} P(\mathcal{G}_i^j)}{\delta}$$
(7)

 $P\left(\theta_{j}\right) \in \Theta$ adalah DPPBtW. Pengetahuan baru yang menjelaskan fenomena yang diamati direpresentasikan sebagai nilai maksimum DPPBtW yang ditunjukkan pada Persamaan (8).

$$P(\theta)_{estimate} = [P(\theta_j)] \tag{8}$$

Kualitas pengetahuan baru yang ditumbuhkan diukur menggunakan parameter Derajat Keyakinan yang diformulasikan pada Persamaan (9).

$$Derajat_Keyakinan = |P(\theta_j)_{estimate} - \phi_1^j| \times 100\%$$
(9)

dengan dan ϕ_1^j adalah probabilitas pengetahuan untuk hipotesa ke-j yang terbaik pada waktu pengamatan γ_1 (Sumari, Wuryandari, Ahmad, & Sembiring, 2010).

Gangguan pada transformator dapat terdeteksi melalui kandungan gas yang terlarut di dalam minyak transformator. Hal tersebut dapat diketahui dengan melakukan cara *Dissolved Gas Analysis* (DGA). Metode *Doernenburg Ratio* (DRM) adalah salah satu metode yang banyak digunakan dalam menginterpretasi data DGA. Metode ini memiliki beberapa kelemahan, antara lain akurasi yang rendah, dan tidak dapat mengidentifikasi multi gangguan. Kelemahan-kelemahan tersebut dapat diatasi dengan metode *Computer Assisted Instruction* (CAI). Metode CAI adalah suatu perspektif baru dalam kecerdasan tiruan yang bekerja berdasarkan prinsip pengetahuan tumbuh (*knowledge growing system*, KGS). Informasi dari berbagai sumber difusikan dengan metode ASSA2010 (Arwin Sumari-Suwandi Ahmad 2010) untuk mendapatkan informasi baru dengan derajat keyakinan (DoC) tertentu. Informasi baru yang dihasilkan digunakan sebagai dasar untuk mengambil keputusan. Berikut Persamaan (10) dari metoda ASSA2010:

$$P(\theta_t) = \frac{\sum_{t=0}^{\tau} P(\psi_t^i)}{\tau}$$
 (10)

dimana:

 τ = Beberapa kali dalam pengamatan ganda, τ diganti dengan n untuk waktu observasi tunggal.

 $P(\Psi_t^i)$ = Nilai terbaik dari kombinasi data sensor dan hipotesis pada setiap waktu pengamatan.

 $P(\theta_t)$ = Kombinasi terbaik dari data sensor dan nilai hipotesis pada seluruh waktu pengamatan.

Pengetahuan akhir yang merupakan kombinasi terbaik dari data sensor dan hipotesis yang diperoleh dari beberapa kali pengamatan juga akan dihitung menggunakan DoC dengan rumus matematika pada Persamaan (11).

$$DoC = P(\theta)estimate = max[P(\theta)_i]$$
 (11)

dimana $P(\theta)$ estimate merupakan nilai DoC yang umumnya merupakan nilai terbesar dari kombinasi data sensor dan hipotesis yang dihasilkan dari perhitungan rumus OM-ASSA2010. Mekanisme ini akan diimplementasikan pada perangkat keras yang dalam hal ini berupa field programmable gate array (FPGA). Sebelum diimplementasikan dalam FPGA dan berdasarkan desain awal jalur data, desain Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL) untuk CAI atau hanya prosesor kognitif berhasil dibuat. Jumlah hipotesis dihitung dengan menggunakan Persamaan (12), dimana λ adalah jumlah maksimum hipotesis yang mungkin dan δ adalah jumlah sensor.

$$\lambda = (2^{\delta} - \delta) - 1 \tag{12}$$

Sistem akan memeriksa apakah setiap sensor dapat mengamati setiap kondisi dari hipotesis yang ada dan memberikan nilai biner 0 atau 1 tergantung dari hasil pengamatan sensor tersebut. Jika semua data sensor sudah diterima dengan lengkap dan setiap nilai gabungan data sensor dan hipotesis sudah terisi, maka proses selanjutnya adalah melakukan penggabungan informasi dan memperoleh informasi yang lengkap untuk setiap kombinasi data sensor dan hipotesis. Informasi yang komprehensif tersebut menjadi kesimpulan dari setiap kombinasi data sensor dan hipotesis yang nantinya memiliki nilai probabilitas yang bervariasi tergantung dari nilai semua data sensor

dan hipotesis untuk masing-masing hipotesis. Inferensi akan menjadi pengetahuan baru tentang sistem.

Mekanisme ini akan berlanjut dari waktu ke waktu selama sistem masih melakukan interaksi dengan fenomena, penginderaan untuk memperoleh informasi, dan mempersepsikannya. Ada konfirmasi apakah semua kesimpulan sudah dilakukan dari t1 sampai $t\tau$. DoC dari setiap waktu observasi disimpan untuk digabungkan dengan kesimpulan berikutnya jika DoC pada titik ini tidak dapat mengenali fenomena yang diamati. Komponen prosesor kognitif yang dirancang didasarkan pada rumus OM-ASSA2010 yang menjadi algoritma KGS. Untuk mengimplementasikan persamaan ini ke dalam perangkat keras, kita harus membentuk rangkaian array sistolik, dengan persamaan matriks seperti yang ditunjukkan pada (13).

$$\begin{bmatrix}
P\theta_{1} \\
P\theta_{2} \\
\vdots \\
P\theta_{j}
\end{bmatrix} = \begin{bmatrix}
v_{11} & v_{12} & v_{13} & \dots v_{1i} \\
v_{21} & v_{22} & v_{23} & \dots v_{2i} \\
\vdots & \vdots & \ddots & \vdots \\
v_{j1} & v_{j2} & v_{j3} & \dots v_{ji}
\end{bmatrix} \begin{bmatrix}
w_{1} \\
w_{2} \\
\vdots \\
w_{i}
\end{bmatrix} + \begin{bmatrix}
P(\omega_{t-1}) \\
t_{1} \\
P(\omega_{t-1}) \\
\vdots \\
t_{n}
\end{bmatrix} (13)$$

dimana w1 = w2 = ... = wi = w (Sumari, Adiono, Sereati, & et., al, 2020)